

High Voltage Electrolytes for Li-ion Batteries

Kang Xu, Jan L. Allen, T. Richard Jow U.S. Army Research Laboratory
19 May 2009

Project ID: esp_20_jow

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start: Sep 2008
- End: Sep 2011
- 20 % complete

Budget

- Total project funding
 - DOE \$600K
- Funding received in FY08
 - \$200K (DOE)
- Funding for FY09 and FY10
 - \$400K (DOE)

Barriers

- State-of-the-art LiPF₆/ Carbonate Solvents electrolytes decompose at voltages of about 4.2 V.
- Electrolytes containing sulfone based solvents are stable anodically up to 5.8 V but lack of SEI formation capability at the anode.
- Sulfone based solvents are viscous.

Partners

- Argonne National Laboratory
- Saft Batteries
- University of Maryland

Objectives

 Develop high voltage electrolytes that enable the operation of Li-ion batteries with high voltage cathode at higher voltages for enhanced energy density for plug-in hybrid electric vehicles

Milestones

- Sep 2009: Synthesize sulfone based solvents with and without unsaturated bonds and evaluate their electrochemical properties
- Sep 2010: Test, evaluate and formulate electrolytes containing the synthesized sulfone based solvents
- Sep 2011: Select promising formulations for further performance evaluation and demonstration in cells of 18650 or larger sizes

Approach

- Explore asymmetric sulfone with different functional groups for lower melting points and low viscosity
- Explore sulfone solvents with functional group containing un-saturated bonds as additives
- Explore non-sulfone based additives in combination with sulfone solvents for improved performance

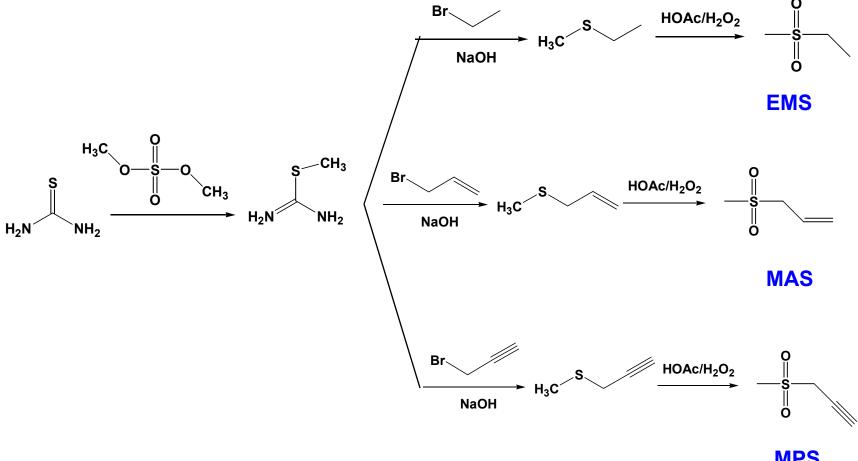
Technical Accomplishments

Synthesized sulfone solvents with new structures are listed below.

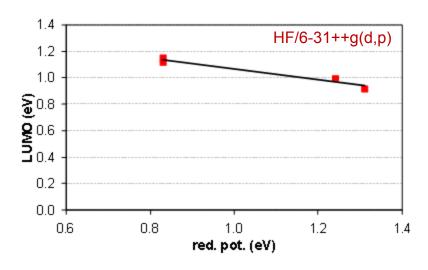
Solvent	Structure	Melting Point (oC)	Boiling Point (oC)	LUMO* (eV)	HOMO* (eV)	Reductio n Potential (vs. Li+/Li)	Oxidatio n Potential (vs. Li+/Li)
MAC		<-50	130	1.15/0.97	10.43/10.30	0.83	5.56
MPC			150	1.11/0.94	10.98/10.75	0.83	6.20
LLC		80		0.87/0.72	12.95/12.89	1.33±0.11	7.85±0.04
SL	o ö	35		0.87/0.65	11.55/11.58	1.34±0.02	6.23±0.03
EMS	o o	36.5		0.90/0.72	11.87/11.66	1.26±0.02	6.32±0.03
MAS	0,0			0.91/0.66	10.73/10.76	1.31	5.65
MPS	0,0			0.99/0.73	11.25/10.99	1.24	6.21

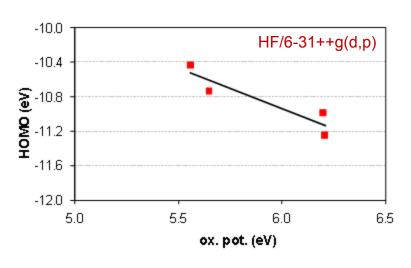
^{*} LUMO and HOMO computational work performed by Prof. J. Klauda at UMD

Synthetic Routes: Carbonates



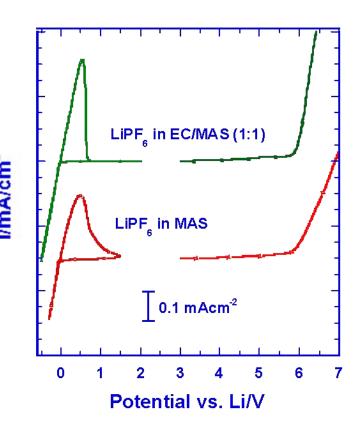
Synthetic Routes: Sulfones





HOMO/LUMO Calculations (Prof. J. Klauda, UMD)

- The QM method used for these HOMO/LUMO calculations
- The correlation coefficients between LUMO/reduction or HOMO/oxidative potentials are
 -0.968 and -0.919 for HF/6-31++g(d,p), respectively
 (-0.994 and -0.748 for MP2/aug-cc-pVDZ) for the additives (not EC).



Preliminary Electrochemical Characterizations

- Three electrode configuration
- Pt as working
- Li as counter and reference
- ~ 6 V oxidation limit
- Need further test on cathode surfaces

Future Work

- Continue the syntheses of the sulfones with new functional groups and the electrochemical and physicochemical characterizations of LiPF₆ in these solvents
- Evaluate LiPF₆ in conventional carbonate solvents with and without VC additives in cells containing high voltage cathodes such as LiNi_{1.5}Mn_{0.5}O₂, Li_{1+x}Ni_{0.33}Mn_{0.33}Co_{0.33}O₂, and LiCoPO₄ as baselines.
- Evaluate LiPF₆ in sulfone solvents and their combination with other solvents in cells containing high voltage cathodes and compare with the results from the baseline.

Summary

- The high voltage electrolytes development has been focused on the development of anodically more stable sulfone based than currently used carbonate based solvent systems.
- Sulfone with different functional groups will be explored and synthesized as improved solvents and additives for Li-ion batteries.
- The formulated electrolytes containing developed sulfone based solvents in combination with other solvents will be evaluated with the high voltage cathodes in Li-ion cells.

